Forward LIBOR model

Math 622
May 12, 2014

1 Forward LIBOR

1.1 Continuous vs simple compounding

One "draw-back" of the forward rate, as we discussed, is that we cannot posit a lognormal distribution for $f(t, T)$ since that would cause the forward rate to explode near T (Shreve's Section 10.4.1). We can see the cause of this as coming from the continuous compouding used in the definition of the forward rate:

$$
B(t, T)=e^{-\int_{t}^{T} f(t, u) d u}
$$

or equivalently

$$
B(t, T+\delta) e^{\int_{T}^{T+\delta} f(t, u) d u}=B(t, T)
$$

Thus, $f(t, u), T \leq u \leq T+\delta$ can be seen as the interest rate one can lock in at time t for investing on the time interval $[T, T+\delta]$, compounding continuously.

A solution to this problem, if we insist on the possibility of positing a log-normal distribution, is to try the simple compounding instead. That is, we denote $L_{\delta}(t, T)$ as the quantity that satisfies

$$
B(t, T+\delta)\left(1+\delta L_{\delta}(t, T)\right)=B(t, T)
$$

Compare this equation with the one above, you should see that $L_{\delta}(t, T)$ the interest rate one can lock in at time t for investing on the time interval $[T, T+\delta]$ with simple compounding: repayment $=$ investment $\times(1+$ duration of investment \times interest rate).
$L_{\delta}(t, T)$ is called the simple forward LIBOR rate of tenor δ.

1.2 How to construct a portfolio that realize the simple interest rate $L_{\delta}(t, T)$

Suppose at time $t<T$, we go short one zero-coupon bond and long $B(t, T) / B(t, T+\delta)$ zero-coupon bonds. The value of this portfolio is zero at time t; at time T it requires us to pay out one dollar and at time $T+\delta$ we receive $B(t, T) / B(t, T+\delta)$ dollars. Thus at time t we can lock in a deposit that multiplies to $B(t, T) / B(t, t+\delta)$ over $[T, T+\delta]$ and hence earns the simple interest rate $L_{\delta}(t, T)$ satisfying

$$
1+\delta L_{\delta}(t, T)=\frac{B(t, T)}{B(t, T+\delta)}
$$

Thus

$$
L_{\delta}(t, T)=\frac{1}{\delta}\left[\frac{B(t, T)}{B(t, T+\delta)}-1\right]=\frac{1}{\delta} \frac{B(t, T)-B(t, T+\delta)}{B(t, T+\delta)}
$$

We have immediately that

$$
1+\delta L_{\delta}(T, T)=\frac{1}{B(T, T+\delta)}
$$

Thus $L_{\delta}(T, T)$ is the simple interest rate available at time T for a deposit over time period $[T, T+\delta]$. This is a financially important quantity, because it is often used for floating rate loans or as a benchmark for interest rate caps and floors.

1.3 Dynamics of $L_{\delta}(t, T)$

Here is an elementary, but very important observation:

$$
\begin{aligned}
L_{\delta}(t, T) & =\frac{1}{\delta} \frac{B(t, T)-B(t, T+\delta)}{B(t, T+\delta)} \\
& =\frac{\frac{1}{\delta} B(t, T)-\frac{1}{\delta} B(t, T+\delta)}{B(t, T+\delta)} .
\end{aligned}
$$

Thus $L_{\delta}(t, T)$, for $t \leq T$ is the $T+\delta$ forward price of a portfolio that is long $1 / \delta$ zero coupon bonds that mature at T and short $1 / \delta$ zero coupon bonds that mature at $T+\delta$.

In this section, we will derive the model implied for the forward LIBOR rate by the risk-neutral HJM model. To start out, observe that since

$$
\begin{aligned}
L_{\delta}(t, T) & =\frac{1}{\delta} \frac{B(t, T)-B(t, T+\delta)}{B(t, T+\delta)} \\
& =\frac{1}{\delta} \frac{B(t, T)}{B(t, T+\delta)}-\frac{1}{\delta}
\end{aligned}
$$

we have

$$
d L_{\delta}(t, T)=\delta^{-1} d[B(t, T) / B(t, T+\delta)]
$$

Following the notation of the change of numéraire section, we define

$$
B^{T+\delta}(t, T):=B(t, T) / B(t, T+\delta)
$$

as the $T+\delta$ forward price of $B(t, T)$.
Observe then, that it is most natural to express the model for $L_{\delta}(t, T)$ under the $T+\delta$ forward measure $\widetilde{\mathbf{P}}^{T+\delta}$. We know from Theorems 9.2.1 and 9.2.2 in Shreve that because

$$
\begin{aligned}
d D(t) B(t, T) & =-D(t) B(t, T) \sigma^{*}(t, T) d \widetilde{W}(t) \\
d D(t) B(t, T+\delta) & =-D(t) B(t, T+\delta) \sigma^{*}(t, T+\delta) d \widetilde{W}(t)
\end{aligned}
$$

we have

$$
\begin{align*}
d L_{\delta}(t, T) & =\frac{1}{\delta} B^{T+\delta}(t, T)\left[\sigma^{*}(t, T+\delta)-\sigma^{*}(t, T)\right] d \widetilde{W}^{T+\delta}(t) \\
& =\frac{1}{\delta}\left[1+\delta L_{\delta}(t, T)\right]\left[\sigma^{*}(t, T+\delta)-\sigma^{*}(t, T)\right] d \widetilde{W}^{T+\delta}(t) \\
& =L_{\delta}(t, T)\left\{\frac{1+\delta L_{\delta}(t, T)}{\delta L_{\delta}(t, T)}\left[\sigma^{*}(t, T+\delta)-\sigma^{*}(t, T)\right]\right\} d \widetilde{W}^{T+\delta}(t) \tag{1}
\end{align*}
$$

where $\widetilde{W}^{T+\delta}(t)=\widetilde{W}(t)+\int_{0}^{t} \sigma^{*}(u, T+\delta) d u$ is a Brownian motion under $\widetilde{\mathbf{P}}^{T+\delta}$. From this equation we can easily derive the model for the forward LIBOR rate under the original risk-neutral measure $\widetilde{\mathbf{P}}$, but we will not have need for this.

Remark:
(i) If we denote

$$
\gamma(t):=\frac{1+\delta L_{\delta}(t, T)}{\delta L_{\delta}(t, T)}\left[\sigma^{*}(t, T+\delta)-\sigma^{*}(t, T)\right],
$$

then it follows that

$$
d L_{\delta}(t, T)=L_{\delta}(t, T) \gamma(t) d \widetilde{W}^{T+\delta}(t)
$$

Thus $L_{\delta}(t, T)$ has log-normal distribution under $\widetilde{\mathbf{P}}^{T+\delta}$, which is a goal we have set out to achieve. This will help us to derive pricing equation in Black-Scholes style for financial products based on $L_{\delta}(t, T)$ as discussed in the Sections below.
(ii) Note also that $L_{\delta}(t, T)$ is a martingale under $\widetilde{\mathbf{P}}^{T+\delta}$, a fact which we might also infer from its definition.

2 T-forward models

Previously, we defined a T-forward measure. This is a measure, $\widetilde{\mathbf{P}}^{T}$, if it exists, under which T-forward prices of all market assets are martingales. Recall that the T-forward price of an asset whose price in dollars is $S(t)$ is $S(t) / B(t, T)$. Now assume we have an HJM model driven by a single Brownian motion, and write it under the risk-neutral measure $\widetilde{\mathbf{P}}$. According to the theory developed in Chapter 9 of Shreve, the T-forward measure is defined by a change of measure from $\widetilde{\mathbf{P}}$ by the Radon-Nikodym derivative,

$$
\begin{equation*}
\frac{d \widetilde{\mathbf{P}}^{T}}{d \widetilde{\mathbf{P}}}=\frac{D(T)}{B(0, T)} \tag{2}
\end{equation*}
$$

That is, $\widetilde{\mathbf{P}}^{T}(A)=E\left[\mathbf{1}_{A} D(T)\right] / B(0, T)$, for $A \in \mathcal{F}$. But we know the solution to (??) is

$$
D(t) B(t, T)=B(0, T) \exp \left\{-\int_{0}^{t} \sigma^{*}(u, T) d W(u)-\frac{1}{2} \int_{0}^{t}\left(\sigma^{*}\right)^{2}(u, T) d u\right\}
$$

and hence

$$
\begin{equation*}
\frac{d \widetilde{\mathbf{P}}^{T}}{d \widetilde{\mathbf{P}}}=\exp \left\{-\int_{0}^{T} \sigma^{*}(u, T) d W(u)-\frac{1}{2} \int_{0}^{t}\left(\sigma^{*}\right)^{2}(u, T) d u\right\} \tag{3}
\end{equation*}
$$

It follows from Girsanov's theorem that

$$
\begin{equation*}
\widetilde{W}^{T}(t)=\widetilde{W}(t)+\int_{0}^{t} \sigma^{*}(u, T) d u \tag{4}
\end{equation*}
$$

is a Brownian motion under $\widetilde{\mathbf{P}}^{T}$, at least for times $t \leq T$.
All this is review of section 9.4 in Shreve.

3 Changing between T-forward measures

This section states a formula that will be helpful for understanding forward LIBOR models. Let $0<T<T^{\prime}$. Suppose that we have a risk-neutral model for the T^{\prime} forward prices of a market in which zero-coupon bonds are offered on all maturities. We are not assuming that this has necessarily been derived from an HJM model, just that we have a probability space with a measure $\widetilde{\mathbf{P}}^{T^{\prime}}$ under which the T^{\prime}-forward prices of all assets are martingales. Let us denote the T^{\prime} forward price of an asset whose price in dollars is $S(t)$ by $S^{T^{\prime}}(t)=S(t) / B\left(t, T^{\prime}\right)$. In particular, the T^{\prime}-forward price of a zero-coupon bond maturing at T, which is

$$
B^{T^{\prime}}(t, T)=\frac{B(t, T)}{B\left(t, T^{\prime}\right)}, \quad t \leq T
$$

is a martingale under $\widetilde{\mathbf{P}}^{T^{\prime}}$. The T forward price of an asset whose T^{\prime} forward price is $S^{T^{\prime}}(t)$ is

$$
S^{T}(t)=\frac{S(t)}{B(t, T)}=\frac{S(t) / B\left(t, T^{\prime}\right)}{B(t, T) / B\left(t, T^{\prime}\right)}=\frac{S^{T^{\prime}}(t)}{B^{T^{\prime}}(t, T)}
$$

We are interested in finding the $\widetilde{\mathbf{P}}^{T}$-forward measure that makes prices $S^{T}(t)$ into martingales. Since we are not starting from an HJM model as in the previous section, we want to derive this in terms of the T^{\prime}-forward measure. Denote expectation with respect to $\widetilde{\mathbf{P}}^{T^{\prime}}$ by $\tilde{E}^{T^{\prime}}$.

Theorem 1. Define, $\widetilde{\mathbf{P}}^{T}$ by

$$
\begin{equation*}
\widetilde{\mathbf{P}}^{T}(A)=\frac{B\left(0, T^{\prime}\right)}{B(0, T)} \tilde{E}^{T^{\prime}}\left[\mathbf{1}_{A} \frac{1}{B\left(T, T^{\prime}\right)}\right] \tag{5}
\end{equation*}
$$

Then if an asset is such that its T^{\prime} - forward price is a martingale under $\widetilde{\mathbf{P}}^{T^{\prime}}$ then its T-forward price is also a martingale under $\widetilde{\mathbf{P}}^{T}$.

This theorem is a generalization of formula (9.2.7) in Shreve.
Heuristic idea:
The intuitive idea why formula (5) is true is as followed. We want to convert from $\widetilde{\mathbf{P}}^{T^{\prime}}$ to $\widetilde{\mathbf{P}}^{T}$. The numéraire associated with $\widetilde{\mathbf{P}}^{T}$ is $B(t, T)$. The price process of this numéraire under $\widetilde{\mathbf{P}}^{T^{\prime}}$ is

$$
N(t):=\frac{B(t, T)}{B\left(t, T^{\prime}\right)} .
$$

Thus the change of measure formula states that

$$
\begin{aligned}
\widetilde{\mathbf{P}}^{T}(A) & =\tilde{E}^{T^{\prime}}\left[\mathbf{1}_{A} \frac{N(t)}{N(0)}\right] \\
& =\frac{B\left(0, T^{\prime}\right)}{B(0, T)} \tilde{E}^{T^{\prime}}\left[\mathbf{1}_{A} \frac{1}{B\left(T, T^{\prime}\right)}\right]
\end{aligned}
$$

Compare this with what we did for change of measure from $\widetilde{\mathbf{P}}$ to $\widetilde{\mathbf{P}}^{(N)}$, for example. The numéraire under $\widetilde{\mathbf{P}}^{(N)}$ is clearly $N(t)$. Its "price" under $\widetilde{\mathbf{P}}$ is $D(t) N(t)$. Therefore the change of measure formula is

$$
\widetilde{\mathbf{P}}^{(N)}(A)=\widetilde{E}\left[\mathbf{1}_{A} \frac{D(t) N(t)}{D(0) N(0)}\right]
$$

Rigorous proof:
The proof is an application of Lemma 5.2.2 in Shreve: Suppose that $Z(t)$ is a positive martingale under a probability measure \mathbf{P} and define

$$
\mathbf{P}^{Z}(A)=E\left[\mathbf{1}_{A} Z(T)\right] / Z(0)
$$

Then if $M(t)$ is a martingale under \mathbf{P},

$$
\{M(t) / Z(t) ; t \leq T\}
$$

is a martingale under \mathbf{P}^{Z}. To prove the theorem, simply apply this principle with $\widetilde{\mathbf{P}}$ in place of \mathbf{P} and $B^{T^{\prime}}(t, T)=B(t, T) / B\left(t, T^{\prime}\right)$ in place of $Z(t)$. Note that the definition in (5) is the same as

$$
\widetilde{\mathbf{P}}^{T}(A)=\tilde{E}^{T^{\prime}}\left[\mathbf{1}_{A} B^{T^{\prime}}(T, T)\right] / B^{T^{\prime}}(0, T)
$$

Since a T^{\prime} forward price $S^{T^{\prime}}(t)$ is a martingale under $\widetilde{\mathbf{P}}^{T^{\prime}}$, it follows that the T forward price

$$
S^{T}(t)=S^{T^{\prime}}(t) / B^{T^{\prime}}(t, T),
$$

is a martingale under $\widetilde{\mathbf{P}}^{T}$ as defined in (5). This completes the proof.

4 Financial products based on forward LIBOR

4.1 Description

The forward LIBOR $L_{\delta}(t, T)$ is strictly not a financial asset by itself. However, if we think about investing a principal P at time T for the duration $[T, T+\delta]$ to realize the interest payment $P \delta L_{\delta}(T, T)$ at time $T+\delta$, then we have a product that is very much like a Euro style derivative, with expiry $T+\delta$.

One can also create another product that is in the spirit of the Euro Call option, in this case called an interest rate cap. For a constant K positive, we can consider a financial product that pays

$$
V_{T+\delta}=\delta P\left(L_{\delta}(T, T)-K\right)^{+}
$$

at time $T+\delta$. The interpretation is that if we borrow an amount P at time T, we may not want the interest rate $L_{\delta}(T, T)$ to go beyond K. Therefore to protect ourselves,
we would want to get an interest rate cap that would pay us the difference should the interest rate go beyond K.

Moreover, since P and δ are deterministic (we think of them as determined at time 0), for simplicity we can take $P \delta=1$. Thus, one can discuss the following products:
(i) A contract that pays $L_{\delta}(T, T)$ at time $T+\delta$. This is called a backset LIBOR on a notional amount of 1 .
(ii) A contract that pays $\left(L_{\delta}(T, T)-K\right)^{+}$at time $T+\delta$. This is called an interest rate caplet.

Clearly the question is what are the risk neutral prices of these products at time 0 . We will give the formula for backset LIBOR in this section and give a detailed discussion of interest rate cap and caplet in the next section.

4.2 Risk neutral price of backset LIBOR

Theorem 4.1. The no arbitrage price at time t of a contract that pays $L_{\delta}(T, T)$ at time $T+\delta$ is

$$
\begin{aligned}
S(t) & =B(t, T+\delta) L_{\delta}(t, T), 0 \leq t \leq T \\
& =B(t, T+\delta) L_{\delta}(T, T), T \leq t \leq T+\delta
\end{aligned}
$$

$(S(t)$ is the notation Shreve used in the textbook. Don't confuse it with the stock price).

Proof:
By the risk neutral pricing formula

$$
S(t)=\widetilde{E}\left[e^{-\int_{t}^{T+\delta} R(u) d u} L_{\delta}(T, T) \mid \mathcal{F}(t)\right]
$$

If $T \leq t$ then $L_{\delta}(T, T)$ is $\mathcal{F}(t)$ measurable. Therefore

$$
S(t)=L_{\delta}(T, T) \widetilde{E}\left[e^{-\int_{t}^{T+\delta} R(u) d u} \mid \mathcal{F}(t)\right]=B(t, T+\delta) L_{\delta}(T, T)
$$

If $t<T$ then by the change of numéraire pricing formula under $\widetilde{\mathbf{P}}^{T+\delta}$ we have

$$
\frac{S(t)}{B(t, T+\delta)}=\widetilde{E}^{T+\delta}\left[L_{\delta}(T, T) \mid \mathcal{F}(t)\right]
$$

But $L_{\delta}(t, T)$ is a martingale under $\widetilde{\mathbf{P}}^{T+\delta}$ (see equation 1 in Section 1). Therefore,

$$
\frac{S(t)}{B(t, T+\delta)}=L_{\delta}(t, T)
$$

and the conclusion follows.

5 Caps and caplets

5.1 Description

We will consider the following type of floating rate bond. It starts at $T_{0}=0$ and pays coupons C_{1}, \ldots, C_{n+1} on principal P at dates $T_{1}=\delta, T_{2}=2 \delta, \ldots, T_{j}=j \delta, \ldots, T_{n+1}=$ $(n+1) \delta$. The interest charged over $\left[T_{j-1}, T_{j}\right]$ is the LIBOR rate set at T_{j-1}. So coupon $C_{j}=\delta P L_{\delta}\left(T_{j-1}, T_{j-1}\right)$.

Suppose now that Alice has issued such a bond. An equivalentl interpretation is she has taken out a floating rate loan. For convenience, assume the principal is $\$ 1$. She can purchase an interest rate cap to protect herself against unacceptable increases in the floating rate.

A cap set at strike K and lasting until T_{n+1} will pay her $\delta\left(L_{\delta}\left(T_{j-1}, T_{j-1}\right)-K\right)^{+}$ at each time $T_{j}, 1 \leq j \leq n+1$. This means that she will never pay more than rate K over any period; the cap will make up the difference between the $\delta L_{\delta}\left(T_{j-1}, T_{j-1}\right)$ she owes the bond holder and the maximum δK she wishes to pay. We shall use $\operatorname{Cap}^{\mathrm{m}}(0, n+1)$ to denote the market price of this cap at time $T_{0}=0$.

Consider the derivative which pays the interest rate cap only at time T_{j}. So it consists of the single payoff $\delta\left(L_{\delta}\left(T_{j-1}, T_{j-1}\right)-K\right)^{+}$at T_{j}. This is called a caplet. Caplets are not traded as such. However, we can imagine them for the purposes of pricing. Clearly, if $\operatorname{Caplet}_{j}(0)$ denotes the price of this caplet at time $T_{0}=0$, the total price at $T_{0}=0$ of a cap of maturity T_{n+1} will be

$$
\sum_{j=1}^{n+1} \operatorname{Caplet}_{j}(0)
$$

If caps of all maturities are available on the market, we can create a caplet with payoff at T_{j} by going long one cap maturing at T_{j} and short one cap maturing at T_{j-1}. Thus the market price of the caplet at T_{j} is

$$
\operatorname{Caplet}_{j}(0)=\operatorname{Cap}^{m}(0, j)-\operatorname{Cap}^{m}(0, j-1) .
$$

Just as there are interest rate caps, there are also interest floors. By going long a cap and short a floor, one can create also a collar that keeps the interest rate one pays between two levels.

Interest rate caps and floors are widely traded and their prices are readily available from the market.

5.2 A remark on the Black-Scholes formula

The pricing formula for the caplet follows the argument of the Black-Scholes formula. The derivation of the Black-Scholes formula is a direct consequence of the following result about normal random variables, which in turn is a consequence of Corollary 1 in the class lecture notes, Review of Mathematical Finance I.

Theorem 2. If Y is a normal random variable with mean 0 and variance ν^{2},

$$
\begin{equation*}
E\left[\left(x e^{Y-\nu^{2} / 2}-K\right)^{+}\right]=x N\left(\frac{\ln (x / K)+\nu^{2} / 2}{\nu}\right)-K N\left(\frac{\ln (x / K)-\nu^{2} / 2}{\nu}\right) . \tag{6}
\end{equation*}
$$

To see the connection to the Black-Scholes formula, note that the price at time 0 of a call with strike K is

$$
e^{-r T} \tilde{E}\left[\left(x e^{\sigma \widetilde{W}(T)+r T-\frac{1}{2} \sigma^{2} T}-K\right)^{+}\right]=e^{-r T} \tilde{E}\left[\left(x e^{r T} e^{\sigma \widetilde{W}(T)-\frac{1}{2} \sigma^{2} T}-K\right)^{+}\right]
$$

Since $\sigma \widetilde{W}(T)$ is a normal random variable with mean 0 and variance $\sigma^{2} T$, we are exactly in the situation of Theorem 2, and it is easy to derive the Black-Scholes formula from (6).

5.3 Black's caplet model and price formula

The idea behind Black's caplet model and price is to take advantage of Theorem 2 by positing lognormal models where possible. We already saw this strategy in section 9.4 of Shreve, where we assumed T-forward prices for a given T were lognormal. The idea for caplets is similar. Consider the caplet that pays $\delta\left(L_{\delta}\left(T_{j}, T_{j}\right)-K\right)^{+}$at T_{j+1}. We posit that there is a risk-neutral model $\widetilde{\mathbf{P}}^{T_{j+1}}$ under which T_{j+1} forward prices are martingales, that there is a Brownian motion $\widetilde{W}^{T_{j+1}}$ under $\widetilde{\mathbf{P}}^{T_{j+1}}$ and that

$$
\begin{equation*}
d L_{\delta}\left(t, T_{j}\right)=\gamma\left(t, T_{j}\right) L_{\delta}\left(t, T_{j}\right) d \widetilde{W}^{T_{j+1}} \tag{7}
\end{equation*}
$$

where $\gamma\left(t, T_{j}\right)$ is deterministic. Equivalently,

$$
L_{\delta}\left(t, T_{j}\right)=L_{\delta}\left(0, T_{j}\right) \exp \left\{\int_{0}^{t} \gamma\left(u, T_{j}\right) d \widetilde{W}^{T_{j+1}}(u)-\frac{1}{2} \int_{0}^{t} \gamma^{2}\left(u, T_{j}\right) d u\right\}
$$

For convenience of notation, let

$$
\bar{\gamma}^{2}\left(T_{j}\right)=\frac{1}{T_{j}} \int_{0}^{T_{j}} \gamma^{2}\left(u, T_{j}\right) d u
$$

Let $\operatorname{Caplet}_{j+1}\left(0, \bar{\gamma}\left(T_{j}\right)\right)$ denote the price at $T_{0}=0$ of the caplet maturing at T_{j+1}); (we will see that this price depends only on $\bar{\gamma}\left(T_{j}\right)$, if δ and K are fixed, so the notation is appropriate.) By the risk-neutral pricing formula, the T_{j+1}-forward price of the caplet is
$\frac{\operatorname{Caplet}_{j+1}\left(0, \bar{\gamma}\left(T_{j}\right)\right)}{B\left(0, T_{j+1}\right)}=\delta \tilde{E}^{T_{j+1}}\left[\left(L_{\delta}\left(0, T_{j}\right) e^{\int_{0}^{T_{j}} \gamma\left(u, T_{j}\right) d \widetilde{W}^{T_{j+1}}(u)-\frac{1}{2} \int_{0}^{T_{j}} \gamma^{2}\left(u, T_{j}\right) d u}-K\right)^{+}\right]$.
But, since $\gamma\left(t, T_{j}\right)$ is deterministic, $\int_{0}^{T_{j}} \gamma\left(u, T_{j}\right) d \widetilde{W}^{T_{j+1}}(u)$ is a normal random variable with mean 0 and variance $\int_{0}^{T_{j}} \gamma^{2}\left(u, T_{j}\right) d u=T_{j} \bar{\gamma}\left(T_{j}\right)$. Thus from Theorem 2,

$$
\begin{aligned}
\frac{\operatorname{Caplet}_{j+1}\left(0, \bar{\gamma}\left(T_{j}\right)\right)}{B\left(0, T_{j+1}\right)}=\delta L_{\delta}\left(0, T_{j}\right) N & \left(\frac{\ln \frac{L_{\delta}\left(0, T_{j}\right)}{K}+\frac{1}{2} \bar{\gamma}^{2}\left(T_{j}\right) T_{j}}{\bar{\gamma}\left(T_{j}\right) \sqrt{T_{j}}}\right) \\
& -\delta K N\left(\frac{\ln \frac{L_{\delta}\left(0, T_{j}\right)}{K}-\frac{1}{2} \bar{\gamma}^{2}\left(T_{j}\right) T_{j}}{\bar{\gamma}\left(T_{j}\right) \sqrt{T_{j}}}\right)
\end{aligned}
$$

In this way, we derive Black's caplet formula:

$$
\left.\begin{array}{rl}
\operatorname{Caplet}_{j+1}\left(0, \bar{\gamma}\left(T_{j}\right)\right)=B\left(0, T_{j+1}\right) & {[}
\end{array} \delta L_{\delta}\left(0, T_{j}\right) N\left(\frac{\ln \frac{L_{\delta}\left(0, T_{j}\right)}{K}+\frac{1}{2} \bar{\gamma}^{2}\left(T_{j}\right) T_{j}}{\bar{\gamma}\left(T_{j}\right) \sqrt{T_{j}}}\right)\right] \text { } \begin{aligned}
& \left.\delta K N\left(\frac{\ln \frac{L_{\delta}\left(0, T_{j}\right)}{K}-\frac{1}{2} \bar{\gamma}^{2}\left(T_{j}\right) T_{j}}{\bar{\gamma}\left(T_{j}\right) \sqrt{T_{j}}}\right)\right]
\end{aligned}
$$

The implied spot volatility is the value of $\bar{\gamma}_{j}$, which, when substituted into Black's caplet formula, give the market value:

$$
\operatorname{Caplet}_{j+1}\left(0, \gamma_{j}\right)=\operatorname{Caplet}_{j+1}(0)
$$

By finding the implied volatilities and then choosing $\gamma\left(t, T_{j}\right)$ for each j so that

$$
\int_{0}^{T_{j}} \gamma^{2}\left(u, T_{j}\right) d u=T_{j} \gamma_{j}
$$

we can fit Black's model to the market for all j.
We emphasize that this model is formulated directly for forward LIBOR and does not assume that one has formulated a prior model, such as an HJM model, for zerocoupon bond prices.

