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1 Forward LIBOR

1.1 Continuous vs simple compounding

One “draw-back” of the forward rate, as we discussed, is that we cannot posit a log-

normal distribution for f(t, T ) since that would cause the forward rate to explode

near T (Shreve’s Section 10.4.1). We can see the cause of this as coming from the

continuous compouding used in the definition of the forward rate:

B(t, T ) = e−
∫ T
t f(t,u)du,

or equivalently

B(t, T + δ)e
∫ T+δ
T f(t,u)du = B(t, T ).

Thus, f(t, u), T ≤ u ≤ T + δ can be seen as the interest rate one can lock in at

time t for investing on the time interval [T, T + δ], compounding continuously.

A solution to this problem, if we insist on the possibility of positing a log-normal

distribution, is to try the simple compounding instead. That is, we denote Lδ(t, T ) as

the quantity that satisfies

B(t, T + δ)(1 + δLδ(t, T )) = B(t, T ).

Compare this equation with the one above, you should see that Lδ(t, T ) the interest

rate one can lock in at time t for investing on the time interval [T, T + δ] with simple

compounding: repayment = investment × (1 + duration of investment × interest

rate).

Lδ(t, T ) is called the simple forward LIBOR rate of tenor δ.

1



1.2 How to construct a portfolio that realize the simple in-

terest rate Lδ(t, T )

Suppose at time t < T , we go short one zero-coupon bond and long B(t, T )/B(t, T+δ)

zero-coupon bonds. The value of this portfolio is zero at time t; at time T it requires

us to pay out one dollar and at time T + δ we receive B(t, T )/B(t, T + δ) dollars.

Thus at time t we can lock in a deposit that multiplies to B(t, T )/B(t, t + δ) over

[T, T + δ] and hence earns the simple interest rate Lδ(t, T ) satisfying

1 + δLδ(t, T ) =
B(t, T )

B(t, T + δ)

Thus

Lδ(t, T ) =
1

δ

[
B(t, T )

B(t, T + δ)
− 1

]
=

1

δ

B(t, T )−B(t, T + δ)

B(t, T + δ)
.

We have immediately that

1 + δLδ(T, T ) =
1

B(T, T + δ)
.

Thus Lδ(T, T ) is the simple interest rate available at time T for a deposit over time

period [T, T + δ]. This is a financially important quantity, because it is often used for

floating rate loans or as a benchmark for interest rate caps and floors.

1.3 Dynamics of Lδ(t, T )

Here is an elementary, but very important observation:

Lδ(t, T ) =
1

δ

B(t, T )−B(t, T + δ)

B(t, T + δ)

=
1
δ
B(t, T )− 1

δ
B(t, T + δ)

B(t, T + δ)
.

Thus Lδ(t, T ), for t ≤ T is the T + δ forward price of a portfolio that is long 1/δ

zero coupon bonds that mature at T and short 1/δ zero coupon bonds that mature

at T + δ.

In this section, we will derive the model implied for the forward LIBOR rate by

the risk-neutral HJM model. To start out, observe that since

Lδ(t, T ) =
1

δ

B(t, T )−B(t, T + δ)

B(t, T + δ)

=
1

δ

B(t, T )

B(t, T + δ)
− 1

δ
,
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we have

dLδ(t, T ) = δ−1d[B(t, T )/B(t, T+δ)].

Following the notation of the change of numéraire section, we define

BT+δ(t, T ) := B(t, T )/B(t, T+δ)

as the T+δ forward price of B(t, T ).

Observe then, that it is most natural to express the model for Lδ(t, T ) under the

T+δ forward measure P̃T+δ. We know from Theorems 9.2.1 and 9.2.2 in Shreve that

because

dD(t)B(t, T ) = −D(t)B(t, T )σ∗(t, T ) dW̃ (t)

dD(t)B(t, T+δ) = −D(t)B(t, T+δ)σ∗(t, T+δ) dW̃ (t),

we have

dLδ(t, T ) =
1

δ
BT+δ(t, T )[σ∗(t, T+δ)− σ∗(t, T )] dW̃ T+δ(t)

=
1

δ
[1 + δLδ(t, T )] [σ∗(t, T+δ)− σ∗(t, T )] dW̃ T+δ(t)

= Lδ(t, T )

{
1 + δLδ(t, T )

δLδ(t, T )
[σ∗(t, T+δ)− σ∗(t, T )]

}
dW̃ T+δ(t), (1)

where W̃ T+δ(t) = W̃ (t) +
∫ t
0
σ∗(u, T + δ) du is a Brownian motion under P̃T+δ. From

this equation we can easily derive the model for the forward LIBOR rate under the

original risk-neutral measure P̃, but we will not have need for this.

Remark:

(i) If we denote

γ(t) :=
1 + δLδ(t, T )

δLδ(t, T )
[σ∗(t, T+δ)− σ∗(t, T )],

then it follows that

dLδ(t, T ) = Lδ(t, T )γ(t)dW̃ T+δ(t).

Thus Lδ(t, T ) has log-normal distribution under P̃T+δ, which is a goal we have set

out to achieve. This will help us to derive pricing equation in Black-Scholes style for

financial products based on Lδ(t, T ) as discussed in the Sections below.

(ii) Note also that Lδ(t, T ) is a martingale under P̃T+δ, a fact which we might also

infer from its definition.

3



2 T -forward models

Previously, we defined a T -forward measure. This is a measure, P̃T , if it exists, under

which T -forward prices of all market assets are martingales. Recall that the T -forward

price of an asset whose price in dollars is S(t) is S(t)/B(t, T ). Now assume we have an

HJM model driven by a single Brownian motion, and write it under the risk-neutral

measure P̃. According to the theory developed in Chapter 9 of Shreve, the T -forward

measure is defined by a change of measure from P̃ by the Radon-Nikodym derivative,

dP̃T

dP̃
=

D(T )

B(0, T )
. (2)

That is, P̃T (A) = E[1AD(T )]/B(0, T ), for A ∈ F . But we know the solution to (??)

is

D(t)B(t, T ) = B(0, T ) exp{−
∫ t

0

σ∗(u, T ) dW (u)− 1

2

∫ t

0

(σ∗)2(u, T ) du}

and hence

dP̃T

dP̃
= exp{−

∫ T

0

σ∗(u, T ) dW (u)− 1

2

∫ t

0

(σ∗)2(u, T ) du}. (3)

It follows from Girsanov’s theorem that

W̃ T (t) = W̃ (t) +

∫ t

0

σ∗(u, T ) du (4)

is a Brownian motion under P̃T , at least for times t ≤ T .

All this is review of section 9.4 in Shreve.

3 Changing between T -forward measures

This section states a formula that will be helpful for understanding forward LIBOR

models. Let 0 < T < T ′. Suppose that we have a risk-neutral model for the T ′

forward prices of a market in which zero-coupon bonds are offered on all maturities.

We are not assuming that this has necessarily been derived from an HJM model, just

that we have a probability space with a measure P̃T ′
under which the T ′-forward

prices of all assets are martingales. Let us denote the T ′ forward price of an asset

whose price in dollars is S(t) by ST
′
(t) = S(t)/B(t, T ′). In particular, the T ′-forward

price of a zero-coupon bond maturing at T , which is

BT ′
(t, T ) =

B(t, T )

B(t, T ′)
, t ≤ T,
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is a martingale under P̃T ′
. The T forward price of an asset whose T ′ forward price is

ST
′
(t) is

ST (t) =
S(t)

B(t, T )
=

S(t)/B(t, T ′)

B(t, T )/B(t, T ′)
=

ST
′
(t)

BT ′(t, T )
.

We are interested in finding the P̃T -forward measure that makes prices ST (t) into

martingales. Since we are not starting from an HJM model as in the previous section,

we want to derive this in terms of the T ′-forward measure. Denote expectation with

respect to P̃T ′
by ẼT ′

.

Theorem 1. Define, P̃T by

P̃T (A) =
B(0, T ′)

B(0, T )
ẼT ′

[1A
1

B(T, T ′)
] (5)

Then if an asset is such that its T ′- forward price is a martingale under P̃T ′
then its

T -forward price is also a martingale under P̃T .

This theorem is a generalization of formula (9.2.7) in Shreve.

Heuristic idea:

The intuitive idea why formula (5) is true is as followed. We want to convert from

P̃T ′
to P̃T . The numéraire associated with P̃T is B(t, T ). The price process of this

numéraire under P̃T ′
is

N(t) :=
B(t, T )

B(t, T ′)
.

Thus the change of measure formula states that

P̃T (A) = ẼT ′
[1A

N(t)

N(0)
]

=
B(0, T ′)

B(0, T )
ẼT ′

[1A
1

B(T, T ′)
].

Compare this with what we did for change of measure from P̃ to P̃(N), for example.

The numéraire under P̃(N) is clearly N(t). Its “price” under P̃ is D(t)N(t). Therefore

the change of measure formula is

P̃(N)(A) = Ẽ[1A
D(t)N(t)

D(0)N(0)
]
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Rigorous proof:

The proof is an application of Lemma 5.2.2 in Shreve: Suppose that Z(t) is a

positive martingale under a probability measure P and define

PZ(A) = E[1AZ(T )]/Z(0).

Then if M(t) is a martingale under P,

{M(t)/Z(t); t ≤ T}

is a martingale under PZ . To prove the theorem, simply apply this principle with

P̃ in place of P and BT ′
(t, T ) = B(t, T )/B(t, T ′) in place of Z(t). Note that the

definition in (5) is the same as

P̃T (A) = ẼT ′
[1AB

T ′
(T, T )]/BT ′

(0, T ).

Since a T ′ forward price ST
′
(t) is a martingale under P̃T ′

, it follows that the T forward

price

ST (t) = ST
′
(t)/BT ′

(t, T ),

is a martingale under P̃T as defined in (5). This completes the proof.

4 Financial products based on forward LIBOR

4.1 Description

The forward LIBOR Lδ(t, T ) is strictly not a financial asset by itself. However, if we

think about investing a principal P at time T for the duration [T, T + δ] to realize

the interest payment PδLδ(T, T ) at time T + δ, then we have a product that is very

much like a Euro style derivative, with expiry T + δ.

One can also create another product that is in the spirit of the Euro Call option,

in this case called an interest rate cap. For a constant K positive, we can consider a

financial product that pays

VT+δ = δP
(
Lδ(T, T )−K

)+
at time T+δ. The interpretation is that if we borrow an amount P at time T , we may

not want the interest rate Lδ(T, T ) to go beyond K. Therefore to protect ourselves,
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we would want to get an interest rate cap that would pay us the difference should the

interest rate go beyond K.

Moreover, since P and δ are deterministic (we think of them as determined at time

0), for simplicity we can take Pδ = 1. Thus, one can discuss the following products:

(i) A contract that pays Lδ(T, T ) at time T + δ. This is called a backset LIBOR

on a notional amount of 1.

(ii) A contract that pays (Lδ(T, T )−K)+ at time T + δ. This is called an interest

rate caplet.

Clearly the question is what are the risk neutral prices of these products at time

0. We will give the formula for backset LIBOR in this section and give a detailed

discussion of interest rate cap and caplet in the next section.

4.2 Risk neutral price of backset LIBOR

Theorem 4.1. The no arbitrage price at time t of a contract that pays Lδ(T, T ) at

time T + δ is

S(t) = B(t, T + δ)Lδ(t, T ), 0 ≤ t ≤ T

= B(t, T + δ)Lδ(T, T ), T ≤ t ≤ T + δ.

(S(t) is the notation Shreve used in the textbook. Don’t confuse it with the stock

price).

Proof:

By the risk neutral pricing formula

S(t) = Ẽ
[
e−

∫ T+δ
t R(u)duLδ(T, T )

∣∣∣F(t)
]
.

If T ≤ t then Lδ(T, T ) is F(t) measurable. Therefore

S(t) = Lδ(T, T )Ẽ
[
e−

∫ T+δ
t R(u)du

∣∣∣F(t)
]

= B(t, T + δ)Lδ(T, T ).

If t < T then by the change of numéraire pricing formula under P̃T+δ we have

S(t)

B(t, T + δ)
= ẼT+δ

[
Lδ(T, T )

∣∣∣F(t)
]
.

But Lδ(t, T ) is a martingale under P̃T+δ (see equation 1 in Section 1). Therefore,

S(t)

B(t, T + δ)
= Lδ(t, T )

and the conclusion follows.
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5 Caps and caplets

5.1 Description

We will consider the following type of floating rate bond. It starts at T0 = 0 and pays

coupons C1, . . . , Cn+1 on principal P at dates T1 = δ, T2 = 2δ, . . . , Tj = jδ, . . . , Tn+1 =

(n+1)δ. The interest charged over [Tj−1, Tj] is the LIBOR rate set at Tj−1. So coupon

Cj = δPLδ(Tj−1, Tj−1).

Suppose now that Alice has issued such a bond. An equivalentl interpretation is

she has taken out a floating rate loan. For convenience, assume the principal is $1.

She can purchase an interest rate cap to protect herself against unacceptable increases

in the floating rate.

A cap set at strike K and lasting until Tn+1 will pay her δ(Lδ(Tj−1, Tj−1) −K)+

at each time Tj, 1 ≤ j ≤ n + 1. This means that she will never pay more than rate

K over any period; the cap will make up the difference between the δLδ(Tj−1, Tj−1)

she owes the bond holder and the maximum δK she wishes to pay. We shall use

Capm(0, n+ 1) to denote the market price of this cap at time T0 = 0.

Consider the derivative which pays the interest rate cap only at time Tj. So it

consists of the single payoff δ(Lδ(Tj−1, Tj−1) − K)+ at Tj. This is called a caplet.

Caplets are not traded as such. However, we can imagine them for the purposes of

pricing. Clearly, if Capletj(0) denotes the price of this caplet at time T0 = 0, the

total price at T0 = 0 of a cap of maturity Tn+1 will be

n+1∑
j=1

Capletj(0).

If caps of all maturities are available on the market, we can create a caplet with payoff

at Tj by going long one cap maturing at Tj and short one cap maturing at Tj−1. Thus

the market price of the caplet at Tj is

Capletj(0) = Capm(0, j)− Capm(0, j − 1).

Just as there are interest rate caps, there are also interest floors. By going long

a cap and short a floor, one can create also a collar that keeps the interest rate one

pays between two levels.

Interest rate caps and floors are widely traded and their prices are readily available

from the market.
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5.2 A remark on the Black-Scholes formula

The pricing formula for the caplet follows the argument of the Black-Scholes formula.

The derivation of the Black-Scholes formula is a direct consequence of the following

result about normal random variables, which in turn is a consequence of Corollary 1

in the class lecture notes, Review of Mathematical Finance I.

Theorem 2. If Y is a normal random variable with mean 0 and variance ν2,

E

[(
xeY−ν

2/2 −K
)+]

= xN

(
ln(x/K) + ν2/2

ν

)
−KN

(
ln(x/K)− ν2/2

ν

)
. (6)

To see the connection to the Black-Scholes formula, note that the price at time 0

of a call with strike K is

e−rT Ẽ

[(
xeσW̃ (T )+rT− 1

2
σ2T −K

)+]
= e−rT Ẽ

[(
xerT eσW̃ (T )− 1

2
σ2T −K

)+]
.

Since σW̃ (T ) is a normal random variable with mean 0 and variance σ2T , we are

exactly in the situation of Theorem 2, and it is easy to derive the Black-Scholes

formula from (6).

5.3 Black’s caplet model and price formula

The idea behind Black’s caplet model and price is to take advantage of Theorem 2

by positing lognormal models where possible. We already saw this strategy in section

9.4 of Shreve, where we assumed T -forward prices for a given T were lognormal. The

idea for caplets is similar. Consider the caplet that pays δ(Lδ(Tj, Tj)−K)+ at Tj+1.

We posit that there is a risk-neutral model P̃Tj+1 under which Tj+1 forward prices are

martingales, that there is a Brownian motion W̃ Tj+1 under P̃Tj+1 and that

dLδ(t, Tj) = γ(t, Tj)Lδ(t, Tj) dW̃
Tj+1 , (7)

where γ(t, Tj) is deterministic. Equivalently,

Lδ(t, Tj) = Lδ(0, Tj) exp

{∫ t

0

γ(u, Tj) dW̃
Tj+1(u)− 1

2

∫ t

0

γ2(u, Tj) du

}
.

For convenience of notation, let

γ̄2(Tj) =
1

Tj

∫ Tj

0

γ2(u, Tj) du.
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Let Capletj+1(0, γ̄(Tj)) denote the price at T0 = 0 of the caplet maturing at

Tj+1); (we will see that this price depends only on γ̄(Tj), if δ and K are fixed, so the

notation is appropriate.) By the risk-neutral pricing formula, the Tj+1-forward price

of the caplet is

Capletj+1(0, γ̄(Tj))

B(0, Tj+1)
= δẼTj+1

[(
Lδ(0, Tj)e

∫ Tj
0 γ(u,Tj) dW̃

Tj+1 (u)− 1
2

∫ Tj
0 γ2(u,Tj) du −K

)+
]
.

But, since γ(t, Tj) is deterministic,
∫ Tj
0
γ(u, Tj) dW̃

Tj+1(u) is a normal random variable

with mean 0 and variance
∫ Tj
0
γ2(u, Tj) du = Tj γ̄(Tj). Thus from Theorem 2,

Capletj+1(0, γ̄(Tj))

B(0, Tj+1)
= δLδ(0, Tj)N

(
ln

Lδ(0,Tj)

K
+ 1

2
γ̄2(Tj)Tj

γ̄(Tj)
√
Tj

)

− δKN

(
ln

Lδ(0,Tj)

K
− 1

2
γ̄2(Tj)Tj

γ̄(Tj)
√
Tj

)

In this way, we derive Black’s caplet formula:

Capletj+1(0, γ̄(Tj)) = B(0, Tj+1)

[
δLδ(0, Tj)N

(
ln

Lδ(0,Tj)

K
+ 1

2
γ̄2(Tj)Tj

γ̄(Tj)
√
Tj

)

− δKN

(
ln

Lδ(0,Tj)

K
− 1

2
γ̄2(Tj)Tj

γ̄(Tj)
√
Tj

)]
(8)

The implied spot volatility is the value of γ̄j, which, when substituted into Black’s

caplet formula, give the market value:

Capletj+1(0, γj) = Capletj+1(0).

By finding the implied volatilities and then choosing γ(t, Tj) for each j so that∫ Tj

0

γ2(u, Tj) du = Tjγj,

we can fit Black’s model to the market for all j.

We emphasize that this model is formulated directly for forward LIBOR and does

not assume that one has formulated a prior model, such as an HJM model, for zero-

coupon bond prices.
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