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1 Forward LIBOR

1.1 Continuous vs simple compounding

One “draw-back” of the forward rate, as we discussed, is that we cannot posit a log-
normal distribution for f(¢,7") since that would cause the forward rate to explode
near 7' (Shreve’s Section 10.4.1). We can see the cause of this as coming from the

continuous compouding used in the definition of the forward rate:

B(t,T) = e~ Ji fta)du

?

or equivalently
B(t, T + 5)e.f7?+6 ftuw)du _ B(t, T)

Thus, f(t,u),T <u < T 4§ can be seen as the interest rate one can lock in at

time ¢ for investing on the time interval [T, T + 6|, compounding continuously.

A solution to this problem, if we insist on the possibility of positing a log-normal
distribution, is to try the simple compounding instead. That is, we denote Ls(t,T) as
the quantity that satisfies

B(t,T +6)(1 +6Ls(t, T)) = B(t,T).

Compare this equation with the one above, you should see that Ls(¢, T') the interest
rate one can lock in at time ¢ for investing on the time interval [T, T + 6] with simple
compounding: repayment = investment X (1 + duration of investment X interest
rate).

Ls(t,T) is called the simple forward LIBOR rate of tenor 6.

1



1.2 How to construct a portfolio that realize the simple in-
terest rate Ls(t,T)

Suppose at time ¢ < T', we go short one zero-coupon bond and long B(t,T)/B(t,T+9)
zero-coupon bonds. The value of this portfolio is zero at time t; at time 7' it requires
us to pay out one dollar and at time 7"+ ¢ we receive B(t,T)/B(t,T + ¢) dollars.
Thus at time ¢ we can lock in a deposit that multiplies to B(¢,7)/B(t,t + ) over
[T, T + §] and hence earns the simple interest rate Ls(t,T) satisfying

__B@T)
Thus
1 B(t,T) 1 B(t,T) — B(t, T + )
Ls(t,T) == |—Z+2=—1| = =
s6.T) =5 {B(t,TM) } 5 B(t,T+90)
We have immediately that
1
14+0Ls(T\T) = =————.
LT = g9

Thus Ls(7,T) is the simple interest rate available at time 7" for a deposit over time
period [T, T+ ¢]. This is a financially important quantity, because it is often used for

floating rate loans or as a benchmark for interest rate caps and floors.

1.3 Dynamics of Ls(t,T)

Here is an elementary, but very important observation:

1 B(t,T) — B(t,T + 6)

5 B@t,T+9)

sB(t,T)— :B(t,T +9)
B(t,T + )

Thus Ls(¢,T'), for t < T is the T + 6 forward price of a portfolio that is long 1/
zero coupon bonds that mature at 7" and short 1/§ zero coupon bonds that mature
at T+ 9.

In this section, we will derive the model implied for the forward LIBOR rate by

Ls(t, T) =

the risk-neutral HJM model. To start out, observe that since
1L B(t,T) — B(t, T +9)
B(t, T+ )
B(t,T) 1

L6(t7T) 5
1 —
SBULT +0) o
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we have

dLs(t,T) = 6 *d[B(t,T)/B(t, T+6)].
Following the notation of the change of numéraire section, we define
BT(t,T) := B(t,T)/B(t, T+96)
as the T'+0 forward price of B(¢,T).

Observe then, that it is most natural to express the model for Ls(t,7") under the
T+6 forward measure PT*. We know from Theorems 9.2.1 and 9.2.2 in Shreve that

because
dD)B(t,T) = —D()B(t,T)o*(t,T)dW(t)
AD(t)B(t,T+5) = —D(t)B(t,T+68)c*(t,T+5)dW (t),

we have

dLs(t,T) — %B%,T)[a*(t,ﬂa)—o*(t,T)]d’W%)
_ % 1+ 0Ls(t, T)] [0 (£, T+8) — o (¢, T)] dIWT (1)
- Lg(t,T){%[o*(t,TM)—a*(t,T)]}dWT”(t), (1)

where WTM( )+ fo (u, T+ d) du is a Brownian motion under P7H_ From
this equation we can easﬂy derive the model for the forward LIBOR rate under the

original risk-neutral measure f’, but we will not have need for this.

Remark:
(i) If we denote

14 6Ls(t, T)
V() = —5L5(§, T [

then it follows that

o*(t, T+6) — o*(t,T)],

dLs(t,T) = Ls(t, T)v(t)dW ™ (t).

Thus Ls(t, T) has log-normal distribution under P7*?_ which is a goal we have set
out to achieve. This will help us to derive pricing equation in Black-Scholes style for

financial products based on Ls(t,T) as discussed in the Sections below.

(ii) Note also that Ls(t, T) is a martingale under P74 a fact which we might also

infer from its definition.



2 T-forward models

Previously, we defined a T-forward measure. This is a measure, IN’T, if it exists, under
which T-forward prices of all market assets are martingales. Recall that the T-forward
price of an asset whose price in dollars is S(t) is S(t)/B(t,T). Now assume we have an
HJM model driven by a single Brownian motion, and write it under the risk-neutral
measure P. According to the theory developed in Chapter 9 of Shreve, the T-forward
measure is defined by a change of measure from P by the Radon-Nikodym derivative,
dP” _ D(T) )
ap  B(0,T)
That is, f’T(A) = E1,D(T)]/B(0,T), for A € F. But we know the solution to (77?)

1S

D(t)B(t,T) = B(0, T) exp{— /0 o (u, T) dW(u)—% /O (0")2(u, T) du}

and hence

dﬁT T * ]' ! *\ 2
— =exp{— | o"(u,T)dW(u)—= [ (¢")*(u,T)du}. (3)
dP 0 2 Jo
It follows from Girsanov’s theorem that
- N ¢
WT(t) = W(t) +/ o*(u, T) du (4)
0

is a Brownian motion under f’T, at least for times ¢t < T

All this is review of section 9.4 in Shreve.

3 Changing between T-forward measures

This section states a formula that will be helpful for understanding forward LIBOR
models. Let 0 < T < T’. Suppose that we have a risk-neutral model for the 7"
forward prices of a market in which zero-coupon bonds are offered on all maturities.
We are not assuming that this has necessarily been derived from an HJM model, just
that we have a probability space with a measure P”" under which the T'-forward
prices of all assets are martingales. Let us denote the T” forward price of an asset
whose price in dollars is S(t) by S™ (t) = S(t)/B(t,T"). In particular, the T'-forward
price of a zero-coupon bond maturing at 7', which is

, B(t,T)
BT(t7T):W, t§T7
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is a martingale under PT". The T forward price of an asset whose T” forward price is
ST'(t) is
S S®/BWT) ST

ST@) = B, T) = B(t,T)/B(t,T") o BT (t,T)

We are interested in finding the P”-forward measure that makes prices ST (t) into
martingales. Since we are not starting from an HJM model as in the previous section,
we want to derive this in terms of the T’-forward measure. Denote expectation with
respect to PT' by ET'.

Theorem 1. Define, PT by

B(0,7")

PT(4) = B(0,T)

ET[1,

BT ?

Then if an asset is such that its T'- forward price is a martingale under PT' then its

T-forward price is also a martingale under pPT.

This theorem is a generalization of formula (9.2.7) in Shreve.
Heuristic idea:

The intuitive idea why formula (5) is true is as followed. We want to convert from
P” to PT. The numéraire associated with PT is B (t,T). The price process of this
numéraire under P7 is

B(t,T)
(t) == =4
B(t,T")

Thus the change of measure formula states that

BT() = BT (Lay )
~ B(0,T) 1
~ B0, )E [IAB(T,T’)]'

Compare this with what we did for change of measure from P to PW ), for example.
The numéraire under P®) is clearly N(¢). Its “price” under P is D(t)N(¢). Therefore

the change of measure formula is

D)N(t)

PM(4) = EDAW]



Rigorous proof:

The proof is an application of Lemma 5.2.2 in Shreve: Suppose that Z() is a

positive martingale under a probability measure P and define
P7(A) = E[1.Z(T)]/Z(0).
Then if M(t) is a martingale under P,
{M(1)/2(t); t < T}

is a martingale under P?. To prove the theorem, simply apply this principle with
P in place of P and BT (t,T) = B(t,T)/B(t,T") in place of Z(t). Note that the
definition in (5) is the same as

PT(A) = ET[1,B" (T, T)]/B"(0,T).

Since a T” forward price ST'(¢) is a martingale under P”", it follows that the T’ forward
price

S7(t) = §7'(6)/B" (1. T),

is a martingale under PT as defined in (5). This completes the proof.

4 Financial products based on forward LIBOR

4.1 Description

The forward LIBOR Ls(t,T) is strictly not a financial asset by itself. However, if we
think about investing a principal P at time T" for the duration [T,7T + 0] to realize
the interest payment P3Ls(T,T) at time T+ 4, then we have a product that is very
much like a Euro style derivative, with expiry T + 0.

One can also create another product that is in the spirit of the Euro Call option,
in this case called an interest rate cap. For a constant K positive, we can consider a

financial product that pays
Viis = 0P(Ls(T,T) — K)©

at time T'+¢. The interpretation is that if we borrow an amount P at time 7', we may

not want the interest rate Ls(T,T) to go beyond K. Therefore to protect ourselves,
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we would want to get an interest rate cap that would pay us the difference should the

interest rate go beyond K.

Moreover, since P and § are deterministic (we think of them as determined at time
0), for simplicity we can take Pd = 1. Thus, one can discuss the following products:

(i) A contract that pays Ls(7T,T) at time T + 0. This is called a backset LIBOR
on a notional amount of 1.

(ii) A contract that pays (Ls(T,T) — K)" at time T+ ¢. This is called an interest
rate caplet.

Clearly the question is what are the risk neutral prices of these products at time
0. We will give the formula for backset LIBOR in this section and give a detailed

discussion of interest rate cap and caplet in the next section.

4.2 Risk neutral price of backset LIBOR

Theorem 4.1. The no arbitrage price at time t of a contract that pays Ls(T,T) at
time T + 6 is

S(t) = B(t,T+0)Ls(t,T), 0<t<T
= B(t,T+0)Ls(T,T), T<t<T+4.
(S(t) is the notation Shreve used in the textbook. Don’t confuse it with the stock
price).

Proof:

By the risk neutral pricing formula
S(t) = B|e I R0 Ly (7, 1) | F (1)
If "<t then Ls(T,T) is F(t) measurable. Therefore
S(t) = Ly(T, T)E [e_ ST Rwdu f(t)] — B(t,T + 6)Ls(T, T).

If £ < T then by the change of numéraire pricing formula under P7+5 we have
S(t)

—:ET+5[L T,T ‘ t].
But Ls(t,T) is a martingale under P7+ (see equation 1 in Section 1). Therefore,
S(t)
——— = Ls(t, T
B(t, T +0) o(t:T)

and the conclusion follows.



5 Caps and caplets

5.1 Description

We will consider the following type of floating rate bond. It starts at 7y = 0 and pays
coupons (1, ..., Cyy; on principal P at dates Th =0, To = 20,...,T; = jo,...,Th11 =
(n+1)6. The interest charged over [T;_y,T;] is the LIBOR rate set at T;_;. So coupon
Cj=0PLs(Tj-1,Tj1).

Suppose now that Alice has issued such a bond. An equivalentl interpretation is
she has taken out a floating rate loan. For convenience, assume the principal is $1.
She can purchase an interest rate cap to protect herself against unacceptable increases

in the floating rate.

A cap set at strike K and lasting until T,y will pay her 6(Ls(Tj—1,Tj—1) — K)*
at each time 73, 1 < j < n + 1. This means that she will never pay more than rate
K over any period; the cap will make up the difference between the 0Ls(T;_1,T;-1)
she owes the bond holder and the maximum 0K she wishes to pay. We shall use

Cap™(0,n + 1) to denote the market price of this cap at time Ty = 0.

Consider the derivative which pays the interest rate cap only at time 7j. So it
consists of the single payoff 6(Ls(Tj-1,Tj-1) — K)* at T;. This is called a caplet.
Caplets are not traded as such. However, we can imagine them for the purposes of
pricing. Clearly, if Caplet;(0) denotes the price of this caplet at time Ty = 0, the
total price at Ty = 0 of a cap of maturity 7;,.1 will be

n+1

Z Caplet;(0).
j=1

If caps of all maturities are available on the market, we can create a caplet with payoff
at T; by going long one cap maturing at 7; and short one cap maturing at 7;_;. Thus

the market price of the caplet at Tj is
Caplet;(0) = Cap™(0,j) — Cap™(0,j — 1).

Just as there are interest rate caps, there are also interest floors. By going long
a cap and short a floor, one can create also a collar that keeps the interest rate one
pays between two levels.

Interest rate caps and floors are widely traded and their prices are readily available

from the market.



5.2 A remark on the Black-Scholes formula

The pricing formula for the caplet follows the argument of the Black-Scholes formula.
The derivation of the Black-Scholes formula is a direct consequence of the following
result about normal random variables, which in turn is a consequence of Corollary 1

in the class lecture notes, Review of Mathematical Finance I.

Theorem 2. IfY is a normal random variable with mean 0 and variance v?,

. [(xeY—”Q/Q B Kﬂ o x (ln(x/K) + u2/2) . (ln(x/K) . VQ/Q) @

14 14

To see the connection to the Black-Scholes formula, note that the price at time 0
of a call with strike K is

N + N +
G—TTE{<x€oW(T)+rT—;02T B K) } — o Th [(xerTGUW(T)—;UQT B K) } ‘

Since UW(T) is a normal random variable with mean 0 and variance 0T, we are
exactly in the situation of Theorem 2, and it is easy to derive the Black-Scholes

formula from (6).

5.3 Black’s caplet model and price formula

The idea behind Black’s caplet model and price is to take advantage of Theorem 2
by positing lognormal models where possible. We already saw this strategy in section
9.4 of Shreve, where we assumed T-forward prices for a given T" were lognormal. The
idea for caplets is similar. Consider the caplet that pays 0(Ls(7},T;) — K)* at Tj4q.
We posit that there is a risk-neutral model P7%+ under which T4+, forward prices are

martingales, that there is a Brownian motion Wi+t under PT+! and that
dLs(t,Tj) = 7(t, Tj) Ls(t, Tj) dW T+, (7)
where v(t,T}) is deterministic. Equivalently,
t . 1 t
i, 1) = 250 Ty exp { [ 2w ) i) 3 [ 5215 .
0 0

For convenience of notation, let



Let Caplet;,(0,7(7;)) denote the price at Ty = 0 of the caplet maturing at
Tj+1); (we will see that this price depends only on 7(7}), if 6 and K are fixed, so the
notation is appropriate.) By the risk-neutral pricing formula, the T} -forward price

of the caplet is

Capletﬁ (0 (T3))

_ 5T
B(0,T; 1)

JF
(Lg(o,mfo YT AV @) o <“7Tﬂ'>d“—K> ]

But, since y(t, T}) is deterministic fOTj y(u, T}) AW T (u) is a normal random variable
with mean 0 and variance fo (u, T;) du = T;7(T;). Thus from Theorem 2,

Capletj+ (0 (Ty)) (I 2GR 4 13T,
B(0.Ty1) ‘5L5(OT)N( STV, )

L5 (0T} _
_ KN (m% - %VQ(T]')TJ)

T)\/T;

In this way, we derive Black’s caplet formula:

Caplet,,,(0,5(T})) = B0, Tj.)

1 Lé(OT) lzTT
(5L5(0,Tj)N<n + ’7( )T

YT/ T;

_SKN <1n R - %ﬂm)

SUANGE ®

The implied spot volatility is the value of 7;, which, when substituted into Black’s

caplet formula, give the market value:
Caplet;,,(0,v;) = Caplet,,(0).

By finding the implied volatilities and then choosing ~(t, ;) for each j so that

T;
/ v (u, Tp) du = Ty,
0

we can fit Black’s model to the market for all j.
We emphasize that this model is formulated directly for forward LIBOR and does
not assume that one has formulated a prior model, such as an HJM model, for zero-

coupon bond prices.
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